
Java and Its Future in Biomedical Computing
_ __________________________________________________________________

R. P. C. Rodgers, MD

_ __________________________________________________________________

Affiliation of the author: U.S. National Library of Medicine.

Correspondence and reprints: R. P. C. Rodgers, MD, Computer Science Branch,
Lister Hill National Center for Biomedical Communications, U.S. National
Library of Medicine. Bethesda, MD 20894. e-mail: rodgers@nlm.nih.gov



Abstract
Java is a new object-oriented computing language, related to C++, that is
currently enjoying considerable attention due to its use in creating network-
sharable platform-independent software modules (known as "applets") that can
be used in conjunction with the World Wide Web. The Web has rapidly
become the most commonly used information retrieval tool associated with the
global computer network known as the Internet. Java has potential to further
accelerate the application of the Web to medical problems. It’s potentially wide
acceptance due to its Web association and its own technical merits also suggest
that it may become a popular language for non-Web-based object-oriented
computing.



Revolutions are exciting, messy, and dangerous affairs. They also present
opportunity to the prepared. Some would deny that the current frenetic activity
surrounding network-based computing is a revolution, but very few would deny
that it is accompanied by the requisite amounts of excitement, mess, danger, and
opportunity. At the center of the current tangle of technical virtuosity, dashed
hopes, commercial hype, and new, dying, and reanimated technologies, sits a
new computer language known as Java (1). Java’s current prominence and fate
are so strongly tied to those of the global computer network known as the
Internet, and to the Internet’s most widely used application to date, World Wide
Web (WWW) (2), that it is impossible to consider Java properly without
discussing its context.

Developed by James Gosling and colleagues at Sun Microsystems in about 1990,
Java was initially conceived as an object-oriented C++-like programming
language that would be embedded within consumer electronics products such as
"personal digital assistants." With the commercial failure of the Apple Newton
and its kin, attention turned to interactive television in 1992. When video-on-
demand services failed to generate commercial excitement, the developers shifted
direction once more. The language made a quiet public appearance in 1994
under the provisional name OAK (Object Application Kernel), along with a
World Web Web client known as WebRunner (later renamed HotJava). To
the outside observer, the appearance of WebRunner looks suspiciously like an
attempt to revive an endangered project by tying it to the spectacular rise of the
World Wide Web. In this, Java is in good company, as interest in
Internet/WWW has revitalized many worthy but underutilized technologies,
including ISDN (currently — but probably not for long — the only practical
way to connect many homes and offices to the Internet at a speed suitable for
multimedia) and Standard Generalized Markup language (SGML, vide infra).

To understand the potential impact of Java, it is necessary to understand the
changes that the World Wide Web has already brought about. From its
inception in the work of Tim Berners-Lee at CERN in the early part of this
decade, then in the hands of programmers at the University of Illinois’ National
Center for Supercomputing Applications (NCSA, whose Mosaic Web client
was the Internet’s first "killer application"), and more lately in numerous
commercial software houses (Netscape Communications prominent among them),
the Web has quickly evolved into an environment that binds together all of the
Internet’s most important user-level communications protocols (including those
for electronic mail, file transfer, and remote login, as well as other network
information systems such as gopher) into a single simple graphical interface.
The Web augmented existing Internet protocols with two of its own: HTML,
the SGML-based markup used for creating Web hypertext documents, and



- 2 -

HTTP, the underlying communications protocol. Based on the ubiquitous
server-client model of network computing, a Web-based interaction typically
consists of a text- or graphics-based Web client allowing the user to select a
highlighted item, in response to which the client sends a request for a
corresponding file from a Web server, by means of an electronic addressing
scheme known as a Uniform Resource Location (URL). The server responds by
returning the requested item or a message explaining why it can not do so. The
Web supports an extensible list of multimedia formats, with current servers
returning text, hypertext, static and moving images, and sound.

World Wide Web has rapidly become the most heavily used information
retrieval system on the Internet. Two of the most important reasons for the
Web’s wide and rapid acceptance, are its platform independence (Web servers
and clients are available for most existing computing systems), and its support
for rapid graphical user interface (GUI) development through extensions to
HTML that allow documents to contain forms with various types of text areas,
pick-lists, and checkboxes. Together with NCSA’s Common Gateway Interface
(CGI), which provides a mechanism for hiding virtually any pre-existing
information system behind a Web server, these features have allowed
information providers to put legacy database systems to work on the Internet
rapidly and at a small fraction of the cost that would have been entailed by
writing native code to create interfaces for the three major software platforms
(the PC, the Apple Macintosh, and UNIX machines). The main effort in
providing access to many legacy systems is not in developing the interactive
forms required for the user interface (though the restricted capability of HTML
forms poses interesting challenges), but rather in developing a state engine
within the CGI application, to overcome the limitations of the single-transaction
communication model of HTTP (due to which, HTTP is often referred to as a
"stateless" or "connectionless" protocol).

The existence of a variety of free and inexpensive Web servers and clients that
interoperate in spite of the fact that they are running on quite different
computing platforms is due in no small part to the reliance of the Internet and
WWW upon open standards. Internet specifications (including those for HTML
and HTTP) are freely available, and may be implemented without a license fee.
This has led to an impressive outpouring of creative activity from both
commercial and non-commercial software developers.

Where does Java fit in? I discuss its future as a traditional application language
below. In the context of the Web, it extends the list of items returned from a
Web server to include bits of executable software (applets). It preserves
platform independence by using bytecodes. On the server side, a programmer
compiles Java source code into the equivalent of machine code for a virtual



- 3 -

computer. These bytecodes, rather than source, are sent in response to an HTTP
request, and the Web client must contain an interpreter which executes the
bytecode commands on the local platform. Java bytecode interpreters already
exist for MicroSoft platforms (Windows 95, Windows NT), the Apple
Macintosh, and various flavors of UNIX. The first interpreter was embedded
into the HotJava Web client, which runs on Sun workstations; Java interpreters
have since appeared in various versions of the Netscape Navigator Web client.
Java and its compiled bytecodes should not be confused with JavaScript, a
client-side interpreted scripting language developed by Netscape (and originally
known as "LiveScript"), which currently shares little with Java beyond a name.

Interpretation of bytecodes achieves platform independence at the cost of a
performance penalty. Sun is currently developing an alternate strategy: use of a
"just-in-time" compiler that would receive Java source code from a network,
compiling it into machine code for the local platform on-the-fly. Sun claims that
this will eventually make the speed of Java competitive with, and possibly better
than, use of compiled C. This claim is not preposterous, for at current network
speeds, the limiting factor in execution speed will often be network transmission
time.

As a language, Java bears a strong resemblance to C/C++, with important
simplifications and additions (it has jokingly been referred to as C++--, or as
C++ without the knives, guns, and clubs). The type definitions, preprocessor
commands, structures, unions, explicit pointers, and functions familiar to the C
programmer have all been swept away in favor of the variables and methods that
together constitute the "classes" of object-oriented programming. The explicit
memory management commands of C have been replaced by an implicit system
for the automatic scavenging of unused memory ("garbage collection").
Although use of the goto command has been deprecated for its disastrous
influence on programming style since Dijkstra’s famous paper (3), it was still
present in C, but has been banned altogether from Java. The multiple
inheritance and operator overloading features of C++ have disappeared, making
work slightly more difficult for competitors in future "obfuscated Java code"
contests. Java is a strongly typed language, imposing strict discipline on the
programmer.

The six "packages" of pre-defined classes that accompany Java support the
intrinsic language manipulations, utilities, mathematical operations, and
input/output capabilities that would be expected from any general purpose
programming language. They also include support for: network communications,
GUI creation, and the manipulation of image and sound data. Java is
multithreaded, useful both for programming clarity and in multiprocessing
environments. Java employs 16-bit characters, which should facilitate



- 4 -

internationalization of applications through the use of character sets such as
Unicode. A novel "documenting comment" allows the author to embed an
extractable document about the program within the source code.

When Java is compiled for use as an applet, some of its capabilities are
suppressed for security purposes: in particular, file input/output, and calls to the
native operating system. This increases security at the cost of ruling out
potentially useful operations such as reading a client-side configuration file to
customize the behavior of an applet. In spite of the attention that Java’s creators
have directed toward questions of applet security, it will be impossible to assess
just how successful they have been until the system has been in widespread use
for some time. In the first widely reported security incident involving Java, a
group at Princeton University devised an applet that was successfully used to
compromise system security through exploitation of a bug in the Internet
Domain Name Service (DNS) system. Although the problem was actually a
DNS defect, and vendors responded quickly with repairs, this incident illustrates
the problems that can arise from the interaction between distinct software
systems in a networked environment. More recently, the same group discovered
a more serious flaw in Java itself, which allowed arbitrary commands to be
executed on the client (4). The operative question is not "does Java have
security bugs," but rather "how quickly will vendors fix security bugs as they are
discovered?"

Java was not the first technology to support network-downloadable applets for
the Web, and it has worthy competition in this regard from Python and tcl/tk.
Python is an object-oriented interpreted language developed by van Rossum,
who has used it to create an experimental Web client known as Grail (5). The
Tool Command Language (tcl) and its associated graphical windowing interface
system, tk, was developed at the University of California at Berkeley by John
Ousterhout, who has since moved the project to Sun Laboratories. His colleague
Stephen Uhler has written a Web client in tcl/tk, SurfIt! (6). Both of these
environments support multiple platforms, and their adherents can make cogent
arguments for technical advantages over the other system and over Java. Neither
of these alternate environments has attracted the attention that Java has. Even if
Java displaces them as applet languages, they are likely to remain in wide use
for other applications.

Does Java have a future outside of the Web? For several years, a number of
carefully crafted, freely available new object-oriented programming languages
have been available from reputable academic centers, but none has developed a
decisively large following. The most often encountered object-oriented language,
C++, is widely perceived as undesirably complex, which may have impeded
broader acceptance of object-oriented programming. Objective C, a simpler



- 5 -

commercial system that adds a small number of new object-oriented commands
to C, has enthusiastic adherents (particularly among users of the NextStep and
OpenStep software development environments) but has not been widely
adapted. Java is attractive both for its kinship with a widely used language, C,
and its elegant parsimony, but it is its Web tie-in that helps it stand out from the
pack. As increasing numbers of programmers employ it for Web applets, it is
likely that they will come to use it for free-standing applications as well. This
could transform Java into one of the most widely used object-based languages,
in turn giving a boost to object-oriented programming itself. The Common
Object Request Broker Architecture (CORBA) is one of several competing
standards for sharing objects over networks. A freely available CORBA-
compliant environment known as ILU (for "Inter Language Unification") has
been created by workers at XEROX PARC, and can be used to create systems
that use any combination of the languages: ANSI C, C++, Common LISP,
Modula-3, and Java. There are also commercial CORBA environments for use
with Java (7).

How is Java likely to affect biomedical computing? Assuming that Java is an
accelerator for the integration of means and resources already brought about by
WWW, we can extrapolate from the recent past. Web-based clinical information
systems have already been demonstrated at a number of institutions (8, 9). Most
major academic medical centers already have a presence on the Web, and a
number are offering computer-aided instruction programs (some of which are
eligible for Continuing Medical Education credits). The National Library of
Medicine is actively developing new database services, such as Internet Grateful
Med, Online Images, and Sourcerer (10); it and other institutions are
collaborating with publishers to deliver the full text of biomedical journals
electronically. Tools and databases for computational biology have appeared, as
well as interesting experiments in near-real-time robotics control and remote
monitoring. The Web has already touched each leg of the tripod of academic
medicine: research, teaching, and clinical care.

Java supplies the wherewithal to free GUI design from the restrictions of HTML
forms, and to integrate additional network protocols directly or indirectly into the
Web environment. The facilitating power of the language is well demonstrated
by a recently released application framework known as Habañero, developed by
NCSA, that allows single-user software tools to be turned into collaborative tools
usable concurrently by multiple users over a network, independently of WWW.
One of the first examples NCSA chose for demonstration under Habañero was a
JAVA applet, written by a student at Syracuse University, that provides visual
access to the multi-gigabyte dataset for the National Library of Medicine’s
Visible Human Project. In the coming year, expect to see new tools for one-on-
one (point-to-point) as well as one-to-many and many-to-many (multicasting)



- 6 -

audio and video teleconferencing. Within grasp is an information appliance that
merges Web-like capability with the functions of telephone, television, and
remote-control device. The ability to integrate information retrieval from
disparate sources with real-time communication could have a profound impact in
a clinical setting.

Java is also triggering hardware developments that may influence clinical care.
Sun has announced plans to implement the Java virtual machine on silicon.
Oracle has announced production of an inexpensive "Internet Toaster," an
inexpensive terminal that derives all of its capabilities by dint of its network
connection. Given the considerable expense of maintaining fully-programmable
computers as clinical workstations, the appearance of cheap interchangeable
networked information appliances that obtain their software on demand from a
shared repository promises to preserve many of the advantages of distributed
computing while restoring some of the benefits of centralized computing that
disappeared along with the mainframe. Given continued progress with the
construction of wireless networks, Java may get an opportunity to revisit its
original task, as the application language for portable personal information
appliances.

If Java is to fully realize its promise, three overarching concerns must be
addressed. First, the security of Java and the Web must be acceptable. The use
of public-key cryptography and digital signatures to establish secure channels of
communication, and to validate the source of Java classes, is near at hand. The
alacrity of Sun and Netscape in responding to reported security holes in Java
itself is also reassuring. Second, network access must be cheap, reliable, and
easy to establish. The inrush of commercial products to get personal computing
devices onto the Internet via analog and digital telephones, and the expected
appearance of new means and faster means of connection that are anticipated in
the wake of the recent deregulation of the U.S. telecommunications industry,
suggest that this problem will also be solved.

The third problem is more subtle and less clearly in control: the need to
maintain shared open (non-proprietary) standards governing both Java and
WWW. There is constant temptation for a software vendor to add new non-
standard features to a Web server or client to create a perceived advantage of
their product over that of their rivals. This works against the interoperability
that has contributed importantly to the Web’s success. The primary center for
Web standards-making appears to have shifted from the Internet Engineering
Task Force (IETF) to the recently formed World Wide Web Consortium,
headquartered jointly at MIT and INRIA (Paris). The W3C’s use of the term
"de facto standards" in apparent preference to "open standards" is worrisome.
With respect to Java, Sun claims to have learned from the factionalization that



- 7 -

UNIX underwent when it entered the commercial market. To avoid the
appearance of multiple non-interoperable Java dialects, Sun is licensing Java’s
source code to developers while retaining rights to pull back changes that are
made, so as to fold them into the generic version. The goal for both WWW and
Java should be to achieve the right balance between adhering to defined open
standards and leaving room for continued innovation.

Finally, we must not forget that revolutions stop for no one, and that early
leaders sometimes become latter-day victims. As of this writing, rumors are
leaking out of AT&T Bell Laboratories with respect to a crash program, code-
named "Inferno, (11)" being led by one of the inventors of the UNIX operating
system, Dennis Ritchie. Very little is known about this project, but its
developers have hinted that they think that Java does not go far enough. Hunker
down behind your barricades with a good cup of coffee, and watch this space for
future developments.

The author thanks Henry McGilton for checking this editorial for factual
correctness, and sharing useful remarks.

References

1. GOSLING J, MCGILTON H. The Java Language Environment. Sun
Microsystems Computer Company, October 1995. A White Paper.

2. LOWE HJ, LOMAX EC, POLONSKY SE. The World Wide Web: A Review
of an Emerging Internet-based Technology for the Distribution of
Biomedical information. JAMIA 1996; 3: 1-14.

3. DIJKSTRA EW. Go to statement considered harmful. Communications of
the ACM 1968; 11: 147-148.

4. DEAN D, FELTEN E, WALLACH D. Java Security: From HotJava to
Netscape and Beyond. Proceedings, IEEE Symposium on Security and
Privacy. 6-8 May 1996. Refer to:
http://www.cs.princeton.edu/˜ddean/java/nativecode.html.

5. For further information about Python and Grail, refer to:
http://www.python.org/.

6. OUSTERHOUT JK. Tcl and the Tk Tookit. Addison-Wesley, 1994. For
further information about tcl/tk, refer to:
http://www.sunlabs.com/research/tcl/; for information about SurfIt, refer to:
http://pastime.anu.edu.au/SurfIt/.

7. Information about ILU CORBA package and it’s use with Java can be found
at http://www-db.stanford.edu/˜hassan/Java/Jylu/; commercial CORBA



- 8 -

environments for use with Java include Sun’s JOE
(http://www.sun.com/sunsoft/neo/external/neo-joe.html) and PostModern
Computing’s BlackWidow (http://www.pomoco.com/).

8. WILLARD KE, HALLGREN JH, CONNELLY DP. W3 Based Medical
Information Systems vs. Custom Client Server Applications. Proceedings,
Second International World Wide Web Conference, Chicago. 17-20 October
1994: 641-651. Refer to:
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/MedTrack/.

9. CIMINO JJ, SOCRATOUS SA, CLAYTON PD. Internet as Clinical
Information System: Application Development Using the World Wide Web.
JAMIA 1995; 2: 273-284.

10. HyperDOC, NLM’s WWW server (http://www.nlm.nih.gov/), provides
examples of stateful search services that exploit CGI/WWW (including
Perez on Medicine, Images from the History of Medicine, and Internet
Grateful Med) as well as access to the Syracuse Visible Human Java applet.

11. Information about Inferno can be found at: http://inferno.bell-
labs.com/inferno/ and http://www.suck.com/dynasuck/96/04/17/.


